
 “Responsive design
 is all about fl uid
 layouts. I still prefer
 set widths” Joni Korpi

Responsive web design, a method coined
by Ethan Marcotte, has been getting lots
of attention lately. In its simplest form,

it uses a flexible grid to create a fluid layout, and
media queries to spot-fix any problems that crop
up when the structure gets too wide or narrow.
It’s great, and is really paving the way for more
adaptive websites.

But responsive design is all about fluid layouts.
I still prefer set widths. That’s fine, but we static
designers haven’t quite updated our tactics to deal
with the myriad screen sizes in use today: 960px
isn’t good enough any more.

Media queries are the key elements of adaptive
websites. We could simply use them to create an
optimised layout for all the most common screen
sizes in use today, each with their own pixel-based
grid. The result would likely be a set of layouts that
would look good by themselves but that would be
out of keeping with one another.

For example, say we made layouts for 320px,
768px, 1,024px and 1,280px. The optimal grids
for each of these would require different column
widths, which would mean slight changes to the
dimensions of elements, creating the feeling that
each design is slightly different from the other. This
kind of deviation is bad.

Also, who really wants to construct four grids for
a single website? Instead, why not create a system
that makes it efficient to form multiple layouts and
keeps them as consistent as possible.

Now imagine that we’re designing a grid for
a brand. It would have to retain its proportions
despite the size of the media it’s projected on:

business cards, stationery, billboards and so forth.
It would most likely be scaled up and down to fit,
and the content inside it would simply change size
with it as required.

In website layouts, however, we can’t just scale
whatever’s in our grids whenever the screen size
alters. Generally, we want all the text and element
measurements to remain the same, ensuring a
feeling of familiarity across each design.

Composing the grid system
We’ve established that column widths must
remain the same across each layout. So must the
gaps between columns, since they would change
the dimensions of elements that span multiple
columns. We’re left with two things to fiddle
around with: the margins around the grid and the
number of columns.

I’m going to use Less Framework (lessframe
work.com) – a CSS blueprint I’ve built – as an
example. In it, I use a column width of 60px, and
24px gaps between columns. I’ve found these
dimensions to be remarkably flexible. With them,
I can create layouts with three columns and 46px
margins (320px), five columns and 42px margins
(480px), eight columns and 60px margins (768px)
and 13 columns with 72px margins. There’ll still
be space left over for browser chrome (1,212px),
and it’s easy to add an 11-column option with 42px
margins (984px) if it’s needed.

In a system like this, elements created for one
layout are often reusable in others. For example,
a block of text three columns wide will fit into any
of the layouts as it is, and an image six columns

wide can be scaled down to 50 per cent to slot into
the three-column layout, taking advantage of the
iPhone 4’s double resolution.

Implementation is simple. First, pick a default
layout. This will be served to all browsers that are
incompatible with media queries. I use the 768px
one, but 984px is a safe bet. Write the CSS for this
layout normally, with no media queries applied.
Then write the other layouts inside an inline media
query. They’ll be used by all modern desktop and
mobile browsers and inherit styles from the default
layout, so you won’t have to write too much extra
CSS; you’ll just be overwriting as necessary.

Browsers that are incompatible with media
queries – most notably Internet Explorers 6-8 – will
ignore every style declaration inside an inline media
query, using the default layout. However, you can
use JavaScript to add support here. At the time of
writing, css3-mediaqueries.js seems best.

Joni Korpi is a Finnish web designer and the author of
Less Framework. Find out more about him by visiting
jonikorpi.com or following @jonikorpi on Twitter.

.net/technique/opinion

.net february 2011 101

 Adaptive
static design
Joni Korpi explains how he built a grid system for creating
multiple layouts that are as consistent as possible

Joni Korpi on…

NET211.tech_korpi 101 12/9/10 11:07:07 AM

